Part Number Hot Search : 
LN513YKM VCO55CL 480T0 N5255 LB1247 57774S A1200 100PC
Product Description
Full Text Search
 

To Download KMB7D0NP30QA-15 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1/9 semiconductor technical data kmb7d0np30qa n and p-ch trench mosfet revision no : 3 general description switching regulator and dc-dc converter applications. it s mainly suitable for back-light inverter. features h n-channel : v dss =30v, i d =7a. : r ds(on) =23.5m ? (max.) @ v gs =10v : r ds(on) =39m ? (max.) @ v gs =4.5v h p-channel : v dss =-30v, i d =-5a. : r ds(on) =45.5m ? (max.) @ v gs =-10v : r ds(on) =80m ? (max.) @ v gs =-4.5v h super high dense cell design. h reliable and rugged. maximum rating (ta=25 ? ) g1 s1 d1 d1 g2 d2 d2 s2 n-channel mosfet p-channel mosfet characteristic symbol n-ch p-ch unit drain-source voltage v dss 30 -30 v gate-source voltage v gss ? 20 ? 20 v drain current dc i d * 7 -5 a pulsed (note1) i dp 29 -20 source-drain diode current i s 1.7 -1.7 a drain power dissipation p d * 2 w maximum junction temperature t j 150 ? storage temperature range t stg -55 q 150 ? thermal resistance, junction to ambient r thja * 62.5 ? /w 1 2 3 4 8 7 6 5 s 1 g 1 s 2 g 2 d 1 d 1 d 2 d 2 2011. 3. 18 flp-8 0.20+0.1/-0.05 p t 1.27 u 0.1 max millimeters 0.4 0.1 0.15+0.1/-0.05 4.85 0.2 b2 g h l d a b1 dim 6.02 0.3 1.63 0.2 0.65 0.2 3.94 0.2 + _ + _ + _ + _ + _ + _ g h b1 b2 1 4 5 8 a p d l t u pin connection (top view) note : *sorface mounted on fr4 board
2011. 3. 18 2/9 kmb7d0np30qa revision no : 3 electrical characteristics (ta=25 ? ) characteristic symbol test condition min. typ. max. unit static drain-source breakdown voltage bv dss i d =250  a, v gs =0v, n-ch 30 - - v i d =-250  a, v gs =0v, p-ch -30 - - drain cut-off current i dss v gs =0v, v ds =24v n-ch - - 1  a v gs =0v, v ds =-24v p-ch - - -1 gate leakage current i gss v gs = ? 20v, v ds =0v n-ch - - ? 100 na p-ch - - ? 100 gate threshold voltage v th v ds =v gs, i d =250  a n-ch 1.0 - 3 v v ds =v gs, i d =-250  a p-ch -1.0 - -3 drain-source on resistance r ds(on) * v gs =10v, i d =7a n-ch - 18 23.5 m ? v gs =-10v, i d =-5a p-ch - 35 45.5 v gs =4.5v, i d =6a n-ch - 30 39 v gs =-4.5v, i d =-4a p-ch - 62 80 on state drain current i d(on) * v gs =4.5v, v ds =5v n-ch 20 - - a v gs =-10v, v ds =-5v p-ch -20 - - forward transconductance g fs * v ds =5v, i d =6.6a n-ch - 10 - s v ds =-5v, i d =-5a p-ch - 9 - source-drain diode forward voltage v sd * i s =1.7a, v gs =0v n-ch - 0.7 1.2 v i s =-1.7a, v gs =0v p-ch - -0.8 -1.2
2011. 3. 18 3/9 kmb7d0np30qa revision no : 3 note 1>* pulse test : pulse width ? 300 k , duty cycle ? 2%. electrical characteristics (ta=25 ? ) characteristic symbol test condition min. typ. max. unit dynamic total gate charge q g n-ch : v ds =15v, i d =6.6a, v gs =10v (fig.1) p-ch : v ds =-15v, i d =-5a, v gs =-10v (fig.3) n-ch - 16.4 20.5 nc p-ch - 13 16 n-ch : v ds =15v, i d =6.6a, v gs =4.5v (fig.1) p-ch : v ds =-15v, i d =-5a, v gs =-4.5v (fig.3) n-ch - 7.2 9 p-ch - 6.25 7.8 gate-source charge q gs n-ch : v ds =15v, i d =6.6a, v gs =10v (fig.1) p-ch : v ds =-15v, i d =-5a, v gs =-10v (fig.3) n-ch - 4 - p-ch - 2.6 - gate-drain charge q gd n-ch - 2.6 - p-ch - 2.9 - turn-on delay time t d(on) n-ch : v dd =15v, i d =6.6a, v gs =10v, r g =3 ? (fig.2) p-ch : v dd =-15v, v gs =-10v, r g =3 ? , r l =2.7 ? (fig.4) n-ch - 7.4 - ns p-ch - 4.7 - turn-on rise time t r n-ch - 27.7 - p-ch - 7.8 - turn-off delay time t d(off) n-ch - 12.2 - p-ch - 47.2 - turn-off fall time t f n-ch - 7.6 - p-ch - 22.6 - input capacitance c iss n-ch : v ds =15v, v gs =0v, f=1.0mhz p-ch : v ds =-15v, v gs =0v, f=1.0mhz n-ch - 742 - pf p-ch - 820 - output capacitance c oss n-ch - 126 - p-ch - 137 - reverse transfer capacitance c rss n-ch - 76 - p-ch - 89 -
2011. 3. 18 4/9 kmb7d0np30qa revision no : 3 gate - source voltage v gs (v) fig1. i d - v ds drain - source voltage v ds (v) 0 0 12 16 8 4 20 0 10 15 5 20 25 16 5 3 24 0 1.6 4.8 3.2 0.8 2.4 4.0 fig2. i d - v gs fig3. v th - t j fig5. r ds(on) - t j -75 -50 -25 0.6 0.4 0.8 1.6 1.0 1.2 1.4 050 25 100 150 75 125 drain current i d (a) drain current i d (a) fig4. i dr - v sd 1 10.0 20.0 0.6 1.0 1.4 1.2 0.8 0.4 0 0 25 -25 50 -75 -50 100 150 125 75 v gs = 10, 9, 8, 7, 6, 5v 1.4 0.6 0.4 1.0 1.8 2.2 normalized threshold voltage v th (v) reverse drain current i dr (a) normalized on resistance junction temperature tj ( ) c source - drain voltage v sd (v) junction temperture t j ( ) c v gs = 3v v gs = 4v t j = 12 5 c v gs = 10v i d = 6.6a v ds = v gs i ds = 250 a fig6. c - v ds drain - source voltage v ds (v) capacitance (pf) 0 200 600 800 1000 1200 400 1600 1800 1400 020 10 525 15 30 c iss c oss c rss n-channel t j = 25 c t j = -55 c
2011. 3. 18 5/9 kmb7d0np30qa revision no : 3 gate - charge q g (nc) 0 12 10 6 2 4 8 614 212 10 81618 4 0 fig7. q g - v gs gate - source voltage v gs (v) v ds =15v i d = 6.6a square wave pulse duration (sec) 10 1 10 2 10 3 10 -3 10 -2 10 -1 10 0 10 -4 fig9. transient thermal response curve t 1 t 2 p dm 1. duty cycle, d = 2. per unit base = r ja = 62.5 c/w t 1 t 2 0.02 0.1 0.2 duty cycle = 0.5 0.05 drain current i d (a) drain - source voltage v ds (v) fig8. safe operation area 10 1 10 1 10 2 10 3 10 -1 10 -2 10 -1 10 0 10 0 10 2 v gs = 10v single pulse 1ms 10ms 10s 100ms 1s dc single pluse 10 -2 10 -1 10 0 normalized transient thermal resistance operation in this area is limited by r ds(on)
2011. 3. 18 6/9 kmb7d0np30qa revision no : 3 fig5. r ds(on) - t j normalized on resistance junction temperture t j ( ) c -75 -50 0.8 0.0 1.0 1.8 2.2 0.4 1.4 050100 -25 25 75 125 150 v gs = -10v i d = -5a drain - source voltage v ds (v) capacitance (pf) fig6. c - v ds -25 -10 -15 0 -5 -20 -30 0 200 600 1200 1000 800 400 c oss c iss c rss p-channel gate - source voltage v gs (v) fig1. i d - v ds drain - source voltage v ds (v) 0 0 -16 -20 -4 -12 -8 0 -5 -10 -20 -15 -25 -2 -5 -6 -4 -3 1 0-4.0-4.8 -2.4 -0.8 -1.6 -3.2 fig2. i d - v gs drain current i d (a) drain current i d (a) v gs = -10,-9,-8,-7,-6,-5v v gs = -4v tj= -55 c tj=125 c v gs = -3v tj=25 c fig4. i dr - v sd reverse drain current i dr (a) -1.0 -10 -20 -0.8 -1.4 -1.2 -0.6 -1.0 -0.4 source - drain voltage v sd (v) normalized threshold voltage v th fig3. v th - t j -75 -50 -25 0.6 0.8 0.4 1.6 1.0 1.4 1.2 050100 25 150 125 75 junction temperature tj ( ) c v ds = v gs i d = -250 a
2011. 3. 18 7/9 kmb7d0np30qa revision no : 3 gate - charge q g (nc) 0 -12 -10 -6 -2 -4 -8 14 8 612 010 24 fig7. q g - v gs gate - source voltage v gs (v) v d = -15v i d = -5a square wave pulse duration (sec) 10 1 10 2 10 3 10 -3 10 -2 10 -1 10 0 10 -4 fig9. transient thermal response curve t 1 t 2 p dm 1. duty cycle, d = 2. per unit base = r ja = 62.5 c/w t 1 t 2 0.02 0.1 0.2 duty cycle = 0.5 0.05 drain current i d (a) drain - source voltage v ds (v) fig8. safe operation area 10 1 10 1 10 2 10 3 10 -1 10 -2 10 -1 10 0 10 0 10 2 v gs = 10v single pulse 1ms 10ms 10s 100ms 1s dc single pluse 10 -2 10 -1 10 0 normalized transient thermal resistance operation in this area is limited by r ds(on)
2011. 3. 18 8/9 kmb7d0np30qa revision no : 3 fig. 1 gate charge v gs 10 v q g q gd q gs q v ds v gs t r t d(on) 10% 90% t on t f t d(off) t off i d i d fig. 2 resistive load switching v gs v ds v ds v gs 1.0 ma schottky diode 10 v 3 ? r l 0.5 v dss 0.5 v dss n-channel
2011. 3. 18 9/9 kmb7d0np30qa revision no : 3 fig. 1 gate charge v gs - 10 v q g q gd q gs q v ds v gs t r t d(on) 10% 90% t on t f t d(off) t off i d i d fig. 2 resistive load switching v gs v ds v ds v gs 1.0 ma schottky diode -10 v 3 ? r l 0.5 v dss 0.5 v dss p-channel


▲Up To Search▲   

 
Price & Availability of KMB7D0NP30QA-15

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X